
Scheduling
Dr. Karim Sobh

Computer Science Department
Jack Baskin School of Engineering
University of California, Santa Cruz

Spring 2017
Assigned: Tuesday 25th April - 15:00

Due: Tuesday 9th May - 15:00

Goals
The primary goal of this project is to modify the FreeBSD scheduler to use lottery scheduling
rather than the current scheduler.

This project will also teach you how to experiment with operating system kernels, and to do
work in such a way that might crash a computer. You’ll get experience with modifying a kernel,
and (at some point) will end up with an OS that doesn’t work, so you’ll learn how to manage
multiple kernels, at least one of which works.

Basics
The goal of this assignment is to get everyone up to speed on modifying FreeBSD and to gain
some familiarity with process scheduling. In this assignment, you are to implement lottery
scheduling in FreeBSD. A lottery scheduler assigns each process’s threads some number of
tickets, then randomly draws a ticket among those allocated to “ready” threads to decide which
one to run. That thread is then allowed to run for a set time quantum, after which it is
interrupted by a timer interrupt and this whole procedure is repeated. The number of tickets
assigned to each thread determines the likelihood that it’ll run at each scheduling decision, and
thus (over the long term) the relative amount of time that it gets to run. Threads that are more
likely to get chosen each time will get chosen more often, and thus will get more CPU time.

In order to be able to increase/decrease or completely modify the number of tickets assigned to

the current thread, you’ll need to modify the functionality of nice() in the kernel such that it
can modify the tickets associated with the threads of the given process. In addition, you will
need to add a new system call that can allow transferring tickets from one process’s threads to

another process’s threads, called gift(pid, t); where t is the number of tickets to transfer

as a gift to the process with the process ID pid. The transferred tickets would then be split
among its threads, based on some policy that you should come up with.

Details
In this project, you’ll modify the scheduler of FreeBSD. This should mostly involve modifying

code in sys/kern/sched_ule.c inside the kernel source directory inside your repository,
though you will need to modify other related source and header files. You’ll need to modify the

functionality of nice() to increase or decrease, or completely reset the number of tickets

allocated to a process’s threads. You’ll also need to introduce a new gift(pid, t) system
call to allow a process to transfer a t number of its own threads’ tickets to any other process

identified by pid. Invoking gift() with 0 tickets and process id 0; e.g. gift(0, 0), should
return the number of tickets available for the invoking process that can be transferred to
another process. Finally, invoking the gift system call with a number of tickets that cannot be

satisfied will return the available number of tickets, acting like gift(0, 0), otherwise upon
success the gift system call should return 0.

You will need to come up with a design decision on how to distribute the gifted tickets among
the threads of the receiving process. You might do that equally or based on the threads prior
execution history; give incentive to some threads over the others. Please, state your design
decision very clearly in your design document and provide all justifications possible.

Note that the lottery scheduling, the modified nice(), and the introduced gift(pid, t)
must only be used for user processes/threads—those whose (effective) user IDs are non-zero
(non-root). This is a good way to ensure that you don’t end up with deadlocks or other
problems.

We strongly recommend that you read the relevant chapter on the ULE process scheduler from
the optional text (Design and Implementation of the FreeBSD Operating Systems). This section
explains how the current scheduler works, and describes which routines are called when. This
information will be invaluable in figuring out which routines need to be modified to implement
lottery scheduling. Focus on the routines that are called both at context switch time and less
frequently to place threads in the appropriate run queues.

Lottery Scheduling
The current FreeBSD scheduler use three types of run queues, each with 64 queues; some of
which only have system processes/threads, and the rest of which are used for user
processes/threads. You’re going to add exactly three run queues for non-root user threads: one
for interactive threads, one for timeshare threads, and one for idle threads. You can use the
existing mechanism for deciding which threads go where, but once you’ve done that, you
should place the threads in the appropriate run queue and use tickets to select the one to run.
This means that only root processes/threads will be placed into the standard run queues; if
there are any threads here, they get priority. If there are no threads here, the scheduler should
first check the interactive queue and, if there are no threads there, check the timeshare queue,
and then check the standard idle queue, then your own user run queue. This means that

interactive threads are fully prioritized over timeshare threads, but that’s OK—interactive
threads are likely to end up being “descheduled” quickly anyway.

A lottery scheduler assigns each thread some number of tickets, then randomly draws a ticket
among those allocated to ready threads to decide which thread to run. That thread is then
allowed to run for a set time quantum, after which it is interrupted by a timer interrupt and the
whole procedure is repeated. The number of tickets assigned to each thread determines both
the likelihood that it will run at each scheduling decision as well as the relative amount of time
that it will get to execute. Threads that are more likely to get chosen each time will get chosen
more often, and thus will get more CPU time.

By default, each thread gets 500 tickets when it’s created. A thread may not have more than
100,000 tickets, and may not go below 1 ticket; All necessary validations need to be applied to
guard this restriction. The nice() call should be used to increase/decrease the tickets of a
process’s threads, and the gift(pid, t) can be used to transfer tickets between processes.

Each time the scheduler is called (for a context switch), it uses the current mechanism to select
a scheduler queue. If the selected queue is either the interactive or timeshare queue, it picks a
number from [0, T−1], where T is the total number of tickets in the queue being run. T should
not be calculated during the context switch, but rather should be tracked as threads are added
or removed from the queue—calculating T each time would be too slow. The number use a 64-
bit integer chosen from a pool of random numbers calculated during the infrequent scheduler
calls (the random number generator shouldn’t run at context switch time). The 64-bit integer
can then be taken modulo T, yielding r. Go down the list of threads in the queue, adding the
number of tickets each one has, until you reach a number larger than r, and that’s the threads
to run. For generating random numbers, you can use the kernel’s built-in functionality or you
can implement your own. If you do implement your own, it should obviously be a legitimate
random number generator obviously and please do explain your random number generator in
your design document. You can implement the same random number generation algorithms
taken off the internet or other public domains, but make sure you cite your sources. Do not
copy code directly though.

Bonus Functionality (2% Extra Credit): You may extend the functionality of the gift system call
with an extra boolean flag parameter gift(pid, t, flag). The flag is a boolean indicator
indicating if the transferred tickets can be transferred further by the receiving process or not; if
flag is true (1) the tickets are transferable, otherwise they can only be used by the receiving
process. For this you will need to have two variables (transferable, and local) whose sum
represents the number of tickets available for each process to give away. In that case, the initial
500 tickets assigned to each thread are considered transferable.

Building the Kernel
Rather than write up our own guide on how to build a FreeBSD kernel, we’ll just point you at
the guide from the FreeBSD web site. You don’t need to worry about taking a hardware
inventory, if you don’t remove any drivers from the kernel you build (and there’s no reason you

should do that). Do make sure you know how to build the kernel and how to keep a copy of the
“stock” kernel in case something goes wrong before you start your design and code. Of course,
we’re happy to help you with building a kernel in laboratory section or TAs office hours.

If it is deemed necessary, more clarifications and references will be posted on the class forum.

 A couple of suggestions will help:

 Try building a kernel with no changes first. Create your own KERNCONFIG file, build the
kernel, and boot from it. If you can’t do this, it’s likely you won’t be able to boot from a
kernel after you’ve made changes.

 Make sure all your changes are committed and pushed before you reboot into your
updated kernel. It’s unlikely that bugs will kill the file system, but it can happen. Commit

anything you care about using git, and push your changes to the server before
rebooting. “The OS ate my code” isn’t a valid excuse for not getting the assignment done.

 As this is a team project, commit and push often if you want your team members to
have your latest code to work on.

Deliverables
As usual, you’ll submit your code using git. To make things easier for your team, there’s a way
to share a single remote repository among multiple people. First, you can control permissions
on your repository so that others can read and write it. The designated team captain can do this
by running the following command:

ssh git@git.soe.ucsc.edu perms classes/cmps111/spring17-01/my_repo + WRITERS
other_acct

The other_acct is the team member’s CruzID. This will add other_acct as a user who

can read and write my_repo. You can, of course, run this command multiple times to add
multiple users. If you want to remove someone, use - instead of +. You can always run:

$ ssh git@git.soe.ucsc.edu perms -h

for a help message.

Next, create a new branch for Assignment 2. Make sure you’re branching off the master
branch:

$ git checkout -b asgn2

At this point, you now have a new branch that everyone in your group can share. Push your
branch and any commits in it to the server so that the rest of your team can see it

IMPORTANT: Doing this won’t destroy any of the hard work you’ve done for the previous
assignments. It merely puts it into a different branch.

Once you’ve set this up, the people you’ve allowed can push to your repository on the server.
The default for git push is to push to the most recent server repository, though you can push
to any repository and branch for which you have permission by doing the following:

$ git push origin asgn2

You’ll also need to create an asgn2 directory under the root, which will contain your design

document, which should be called Design.txt (if plain ASCII text) or Design.pdf (if in

PDF) as well as any other documentation (like Readme.txt) you might have, such as testing
strategies or test code. Formats other than plain text or PDF are not acceptable; please convert
other formats (MS Word, LaTeX, HTML, etc.) to PDF. Your design document should describe the
design of your assignment in enough detail that a knowledgeable C programmer could duplicate
your work. This includes descriptions of the data structures you created or used, all non-trivial
algorithms and formulas, and a description of each function you created or used, including its
purpose, inputs, outputs, and assumptions it makes about the inputs or outputs.

One final thing: each of you need to write up a paragraph or two describing what you
contributed to the group effort, and how you’d rate the other members of your group. This
should be submitted via eCommons. The goal here is for us to understand how each person
contributed to the group effort. We don’t expect everyone to have done the same thing, but we
expect that everyone will contribute to the project. Put any other information or instructions for

the grading staff in the Readme.txt.

Testing
Write a program that uses gift(pid, t) to give its tickets away to another process. You will
need to know the PID of the process you want to donate to. That program will go faster, or
should, and you can also inquire using gift(0, 0) to see that it got enough tickets.

We will use a test program that runs your kernel and calls gift(). We will use both

gift(0, 0) and gift(pid, t). Your code must work for both. You need to do extensive
testing to make sure that it does what (i) is required, (ii) and you expect. Be aware of values of

pid and t that may not make sense: What happens if pid does not exist? What happens if you
try to give away more tickets than you have? What happens if you were to try to give away a
negative number of tickets?

Moreover, you should experiment with at least two policies for assigning tickets. For example,
you could reward I/O intensive threads either linearly (adding tickets), or you could punish CPU
hungry threads exponentially (dividing the number of tickets by a constant); you can utilize the
modified nice() and/or the gift() to achieve that. Based on your gift allocation policy, you
might be assigning gifted tickets in different ways and according to different policies, and it is
recommended to make this as configurable as possible. There are many possibilities, and if you

just do what we have suggested then we will be disappointed. Remember, a lot of the design
decisions must be made by you and your team. Be creative, but explain and justify your choices
in your Design document.

Deliverables Summary:

 Design Document (.txt or .pdf), in <repo>/asgn2/ directory. [git]

 README.txt, in <repo>/asgn2/ directory. [git]
 Kernel source code, modifications made to existing kernel files and maybe new files

added to the kernel source directory, inside <repo>/usr/src/. [git]
 Git Commit ID. [eCommons]
 Your individual contribution(.txt). [eCommons] (This is done individually by everyone)

Hints
 START NOW! Meet with your group NOW to discuss your plan and write up your design

document. design, and check it over with the course staff.
 If you haven’t formed a team yet, do so ASAP and elect a team captain. The captain must

submit team details on eCommons. eCommons will accept late submissions of team
details, but the sooner you finalize your team the sooner you can start. If you’re working
individually, you are your own captain and make sure your team details say so.

 Experiment! You’re running in an emulated system—you can’t crash the whole computer
(and if you can, let us know...).

 Test your scheduler. To do this, you might want to write several programs that consume
CPU time and occasionally print out values, typically identifying both current process
progress and process ID (example: P1-0032 for process 1, iteration 32). Keep in mind
that a smart compiler will optimize away an empty loop, so you might want to use
something like this program for your long-running programs.

 You’re writing code inside the kernel now, there is no C standard library that you can rely
on. All you have are the system calls, which are obviously just functions somewhere
inside the kernel source. Feel free to use any of them. If you want anything else, you’ll
have to implement that from scratch in C.

This project doesn’t require a lot of coding (typically a few hundred lines of code), but does
require that you understand the FreeBSD kernel and how to use basic system calls. You’re
encouraged to go to the lab section or talk with the course staff during office hours to get help if
you need it.

IMPORTANT: As with all the projects this quarter, the key to success is starting early. You can
always take a break if you finish early, but it’s impossible to complete a 20-hour project in the
remaining 12 hours before it’s due.

Project Groups
You are working in a team for this project, which means you need to elect a Team Captain. The
captain turns in the code by checking it in using git. Every member, including the captain of
the team, turns in a contribution file on eCommons.

	Goals
	Basics
	Details
	Lottery Scheduling
	Building the Kernel
	Deliverables
	Testing

	Hints
	Project Groups

